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Biological molecules are not typically
restricted to one particular state

Pyne et al., Small (2014).




Notes 1-2>

Probability p of a system being in a state with energy E
oc exp(-E/kgT)

Boltzmann distribution

Examples, for oxygen molecule:
p(Grenoble)/p(London) = 98%
p(Everest)/p(London) = 33%

When considering (macro-)molecular mechanics, we need
not only consider the molecular (bending or stretching)
energy, but the molecular free energy
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These notes provide some more technical and mathematical details and background mate-
rial for the lecture Mechanics of Molecules and Biological Structures at the European School
on Nanosciences & Nanotechnologies, Grenoble.

1 Boltzmann distribution

The Boltzmann distribution prescribes that

E
the probability of being in a state of energy £ o< exp <_ﬁ) , (1.1)
B

where kg is Boltzmann’s constant (1.38 x 10722 J/K) and T is the absolute temperature. At
room temperature (about 300 K), kg7 ~ 4.1 x 1072} J = 4.1 pN nm.

The general derivation of the Boltzmann distribution can be found in textbooks on statisti-
cal mechanics. To make Eq. 1.1 plausible, I will here derive it in the special case of the distri-
bution of gas molecules as a function of height. In that case, the energy of a a gas molecules is
given by

E(h) =mgh, (1.2)

as you may remember from secondary school, where m is the mass of a molecule, g ~
9.8 m s~? the gravitational acceleration, and h the height above a reference surface.
You may also remember the ideal gas law,

PV =nRT, (1.3)
with
P the pressure of the gas;
V' the volume of the gas;
n the amount of gas (in moles);

R = kg N4 the gas constant, with N (=~ 6.0 x 10?3 mole™ ) the Avogadro constant;
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T 1s the absolute temperature as previously.

This allows us to write

n niNy
P <V> RT = (7) kT = ny ksT | (1.4)

where we define ny as the number of gas molecules per unit volume.
Assuming that 7" does not depend on the height, we can take the derivative

dP dny
s (W) kgT . (1.5)

To derive the Bolzmann distribution in this case, we also calculate dP/dh in a different
way, as follows.

Given a gas volume of cross section A and height dh, the amount the molecules in this
volume is ny Adh, which translates to a force

(dF| = (mg)(ny Adh) (1.6)

that is exerted on the gas column below it. Since the pressure P = F'/A, we can thus derive
that an height increment dh leads to a change in pressure

1
dP = < dF =mgny x (~dh). (1.7)

where the minus sign refers to the fact that the pressure will go down with increasing height.
Rearranging and equating to the earlier result for dP/dh, Eq. 1.5, we find

dP dn
o5 = ~mny = <_th) ksT . (1.8)
Hence,
dny mg
EA A 1.
o ( kBT) ny (1.9)

which is a differential equation with solution

ny X exp (—Zgjlj) = exp (— ié};}) . (1.10)

This proves the Boltzmann formula Eq. 1.1 in the special case of an ideal gas, if we realise
that the probability to find a molecule at height h is proportional to the average number of
molecules that can be found at that height, i.e., p(h) o< ny (h).



2 Free energy

To understand the concept of free energy, it is useful to again consider the case of molecules
in an ideal gas. As derived in Section 1, the probability of a gas molecule being at height A is

p(h) o exp (—%}})) . 2.1)

With E(h) = mgh and recalling the respective altitudes of Grenoble and London, it thus
follows that

probability to find a gas molecule in Grenoble  exp(—mg x 214 meter/kgT)

= . 2.2
probability to find a gas molecule in London exp(—mg x 115 feet/kgT) 2.2)

Since 115 feet corresponds to 35 m and since an O, molecule has a mass of (32 g/mol) /N4 =
5.3 x 1072° kg, the probability to find an an oxygen molecule in Grenoble is

p(Grenoble) 5.3 x 1072 kg x 9.8 ms™2 X (214 — 35) m
POTIOD™) o exp [ — 2.3)
p(London) 4.1 pN nm
. . 1 107° pN
— exp 5.3 x9.8x 179 x 107° pN nm 2.4)
4.1 pN nm
0.093 pN nm
_ _ _ 25
P < 4.1 pN nm ) 9K 25)

of the probability of finding it in London, which is probably the reason why you feel a only
moderately asphyxiated by now.

Looking at this in another way, we can observe that kg7" is large compared to the difference
in potential energy between Grenoble and London, 4.1 pN nm > 0.093 pN nm in Eq. 2.5, i.e.,
thermal fluctuations dominate gravitation as far as the O, distribution is concerned. If this were
not the case, the trip from London to Grenoble would represent a significant health-and-safety
hazard.

For comparison, the same calculation — ignoring any difference in temperature — gives
us a difference in potential energy of 4.6 pN nm between an O, molecule on Mount Everest
and one in London. This is very similar to the energy of thermal fluctuations, and leaving us
with a rather hazardous result of only 33%.

To understand the concept of free energy, let us compare the probability of finding a gas
molecule in a CNRS seminar room in Grenoble with the probability of finding a gas molecule
in a tiny lecturer’s office in London. Now we will not only have to take into account the
difference in (gravitational) energy, but also the difference in room size, i.e.,

probability of gas molecule in seminar room  Vieminarroom €XP(—EGrenoble/ k81

— 2.6
probability of gas molecule in lecturer’s office  Viecturers ofice €XP(— FLondon/ksT) (2.6)

where FEgGrenoble and Epongon refer to the potential energy of a gas molecule in Grenoble and
London, respectively, and Viecurer's office @1 Vieminar room tO the respective sizes of the seminar
room and the lecturer’s office.



To make this result more general, we can assume that a gas molecule occupies a (small)
volume v, such that we can define its total number of distinguishable positions W = V /v for
a maCfOSCOPiC VOlume V Wlth WGrenoble = ‘/seminar room/ 1% and Wlth WLondon = Vlecturer’s office / v,
we can write

probability of molecule in seminar room  exp(—(EGrenoble + 1A In Worenobie) /K1)

probability of molecule in lecturer’s office  exp(—(FEiondon + 7k8 In Wigndon)/ksT)

2.7
_ eXp(_FGrenoble/kBT) : (28)
eXp<_F London / kBT)
where
F=FE—-TkglnW=F-TS (2.9)
is the Helmholtz free energy, and
S=kglnW (2.10)

the entropy.

In this particular example Vieminar room = Viecturer's offices SUCh that it is much more likely to
find a molecule in the seminar room in Grenoble than it is to find a molecule in the lecturer’s
office in London, even though the molecule in Grenoble has a higher potential energy.

Summarising, if the energy difference between two states is small compared to the energy
of thermal fluctuations (kg7"), probabilities are dominated by the number of possible configu-
rations (positions) for the molecule at each particular energy. Hence, entropy is important, and
in general the most favourable state is the one with the lowest free energy.



1. Effect of fluctuations on mechanics
a. Single-molecule mechanics



Single molecule mechanics: experiments
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Molecular stretching on a 3D lattice

A
4+ Vv

g

Notes 3 >

~ /This orientation (down) lowers the potential energy by Fa

This orientation (up) raises the potential energy by Fa

This orientation does not change the potential energy

-a exp(- Fa/kgT) + aexp(+FakgT)+0+0+0+0

<[.> =
1 exp(- FalksT) + exp(+Fa/ksT) + 4 exp(0)
<[> 2 sinh(Fa/kgT) Fa
— = ~ for Fa << kgT
Lot 4 + 2 cosh(Fa/kgT) 3 kgT



3 Gaussian spring

The Boltzmann distribution can help us to predict the force-extension relation for a molecular-
scale chain of paperclips, as a model for, e.g., DNA. If this chain is stretched by a force F'
along the z direction and we assume for simplicity that each paperclip can only be oriented
parallel to the three axes (z, ¥ and z) of a cartesian coordinate system, we can derive the
average end-to-end distance of the chain

(L) = N(L), (3.1)

where N is the number of paperclips on the chain, and (L) the average projection of a paper-
clip along the pulling direction,

(L) = aexp(Fa/kgT) — aexp(—Fa/kgT)

= . 3.2
4+ exp(Fa/kgT) + exp(—Fa/kgT) (3-2)
Here a is the paperclip length such that L, = Na is the stretched length of the chain. Hence

(L) = exp(Fa/kgT) — exp(—Fa/kgT)
4+ exp(Fa/kgT) + exp(—Fa/kgT)

X Lot - (3.3)
A similar result can be derived if one lets the paperclips be oriented in arbitrary direction, i.e.,

not limited to the cartesian axes. We can now consider three special cases:

e Fa > kgT, such that (L) ~ exp(Fa/kgT)/exp(Fa/kgT) X Lot = L, i.e., the chain
is completely straightened.

e F' = 0, which implies that (L) = 0, i.e., without a force, the two ends of the chain are
on average at the same position.

* Fla < kgT, such that for small forces, the average end-to-end distance can be approxi-
mate by a Taylor expansion, and begins to deviate from zero according to

1+ Fa/kgT) — (1 — Fa/kgT 2Fa/kgT
(L) n T Ea/T) — (0 = FajkeT) -y o 2Fa/kel 3y
This can be rewritten as ST
Fa 222 (L) = k(L) (3.5)

a Lo

which is identical to Hooke’s law if we take (L) as an extension and k;, = 3kgT"/(a L)
as a spring constant.

This chain of paperclips will thus behave as flexible cord that already starts behaving as a
(so-called Gaussian) spring when its two ends are very close together, and that only at much
larger forces may behave as an elastic cord under tension, going from completely straightened
to over-stretched.



Force-extension experiments
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Force-extension curve for dsDNA
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Figure 5.14 Physical Biology of the Cell, 2ed. (© Garland Science 2013)



Random-walk models (without applied force)

0
3¢ Cat Cal (’

Figure 8.3 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

e iy T Number of ways W to
have n, of the total N
segments pointing to
the right, in 1D:

W=3,n=2

N!
n. !(N-n)!

W(n;N) =

Probability:

p(n;N) =W(n;N) (/)
W=3,n=1

End-to-end distance:

R=(n.-n)a

W=1,n=0



Notes 4 >

Probability distribution for end-to-end
distance of a macromolecule

0.08 Note:
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4 Macromolecules as random walks

The random-walk model is a commonly used to describe the behaviour of polymers and flex-
ible macromolecules. It considers a polymer as a chain of segments (cf. chain of paperclips)
that can freely rotate with respect to each other. These segments are of a length a over which
the polymer can be considered roughly straight, are considered as steps in a random walk. To
illustrate the principle, I will here derive the probability distribution for the end-to-end distance
R of a one-dimensional random walk, where it is understood that R can both be positive and
negative.

In one dimension, each step (or polymer segment) can be either to the right or to the left.
Let us define n,. as the total number of steps to the right, n; the total number of steps to the left,
and N = n, + n; the total number number of steps such that the contour length of the polymer
L = Na. The end-to-end distance is thus given by

R=(n,—n)a. 4.1)

Since n; = N —n, and N is fixed, we only need to know n, to determine R for any particular
configuration. We thus need to calculate the probability p(n,; N) that of the N segments, n,
are pointing to the right. This probability follows from

p(n,; N) = (the probability of any particular sequence of steps or segment orientations)

X (the number of these sequences that contain n, steps to the right, W (n,; N)) . (4.2)

If there is no external force applied to the polymer, there are equal probabilities (%) for a
segment to point to the right or to the left. Hence

N!
n (N —n,)!"

where W (n,; N) follows from the total number of ways N! to arrange N segments all in
different orientations, and next taking into account that of these /V segments, n, have identical,
indistinguishable orientations, and similar for n; = N — n,.

The next steps of the derivation involve (i) substituting n, = 5/(1 + R/(Na)), (i) making
use of the Sterling approximation for n > 1, Inn! = nlnn — n + %ln(27m), (iii) Taylor
expansions for terms including (1 £ R/(NA)) for R/(N A) < 1, and normalisation such that
[ p(R; N)dR = 1, to yield the final result

p(n; N) = ()Y x W(n N) = (1)

2

4.3)

(R N) ! i (4.4)
: ~N———¢ - )
yuess SmN g Xp ONa2 |
which is a normal distribution.
Using this distribution, we can calculate
“+o0
(R) — / p(R: NYRAR = 0 @.5)
and the variance .
<R2> = / p(R; N)RQdR = Na? = La, 4.6)

which provides a measure of the average absolute end-to-end distance.
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1. Effect of fluctuations on mechanics
a. Single-molecule mechanics
- DNA size in solution






How long is DNA in solution?

DNA: persistence length §p = 50 nm
Contour length L = 0.34 nm x N

base pairs

V<R 2> = (2LE ) = 0.82 V(N,,,q, pairsS,) NM

Alternative measure of polymer size: radius of gyration R
<Rg%> = 1IN T<(R; = Rg)*> = 0.34 V(N 1oirs,) NM

R ... = centre of mass

CM

Typical human chromosome: ~ 108 bp

Contour length ~ 3 cm
V<R 2>~ 60 pm



Size of DNA in solution
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Figure 8.6 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Size of “average” nucleus in mammalian cells: ~ 6 um !



1. Effect of fluctuations on mechanics
a. Single-molecule mechanics

- Gene repression
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Figure 4.15 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

expression of proteins
that are necessary for
digestion of lactose



Probability of loop formation
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Figure 8.19 Physical Biology of the Cell, 2ed. (© Garland Science 2013)



Probability of loop formation
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1. Effect of fluctuations on mechanics

b. Multi-molecule mechanics
- Polymer brush & nuclear pores



Polymer brush

Israelachvili (2011). Intermolecular and surface forces, 3° ed.

Nuclear pore complex
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Terry, L. J. & Wente, S. R. Eukaryot (2009). Cell 8, 1814-27.




Nuclear pore nanomechanics

Bestembayeva, Kramer et al.
Nature Nanotechnol. (2015)

Height: O | 80nm
Stiffness: 0 P M 16 pN/nm -100
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In-silico indentation of nuclear pores

Entropic brush

~ | v

10 nm

_‘L J




Comparison with experiment

Force [pN] Stiffness [pN/nm]
200+ W

[ z [nm]
20 —10 0 20 ™™ -20=10 " "10 20

— “Entropic brush” scenario

“Gel” scenario

= Experimental data



1. Effect of fluctuations on mechanics

c. Mechanics of 2D assemblies
- Membrane pore formation






Lipid membranes

hydrophilic
head
hydrophobic
tail

Figure 11.1a Physical Biology of the Cell, 2ed. (© Garland Science 2013)

What is the cost of drilling a hole in such a membrane?



Notes 2
The answer: Entropy & hydrophobicity >

L AA A

7/
//
%,
\\\\\\\ 1

oxygen

igure 5.27 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

S = kg In[number of configurations]
AS=kzIn3-kgIn6=-kgln 2, per H,O molecule



Free energy cost of 10 nm hole...

$5nm

Hydrophobic tails of lipids exposed over an area corresponding
to the side wall of the pore: 211 (5 nm) (5 nm) = 50T Nm?
~10 H,O molecules nm2 =>

Free energy =- TAS = (10 nm?) x kgTIn2=7 kyT nm
Free energy cost of hole: 501 x 7 kg T = 10° kg T !l



Bacterial nanodrills:
Cholesterol-dependent cytolysms







2. Active mechanical components



Cytoskeleton: The cell's spatial organisation

Green:
- Microtubules

Red:
- Actin filaments

Blue:
- Nucleus




Separating chromosomes during mitosis
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Figure 16-6. Molecular Biology of the Cell, 4th Edition.



2. Active mechanical components
a. Molecular motors
- Muscles
- Example of myosin V
- Diffusion / Smoluchowksi equation



A look inside a muscle
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Figure 16.7a Physical Biology of the Cell, 2ed. (© Garland Science 2013)



Electron microscopy
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Walker et al., Nature (2000)



Some translational motors
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Molecular motors, example of Myos
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Actin fixed, myosin moves...

Kodera et al., Nature (2010)



Myosins fixed, actin moves...




Notes 5 >

One-state model
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Figure 16.22 Physical Biology of the Cell, 2ed. (© Garland Science 2013)




5 Random walking, diffusion, and Smoluchowski equation

Random walks can be described in various ways and have wide applicability. For example, we
can consider a molecular motor walking along a one-dimensional filament with steps of length
a. For simplicity, we consider only a so-called one-state model of such a motor, i.e., at each
position the motor can only be in a single state. Such a motor is equivalent to a random walker
that can take a step forward or backward, where — unlike the random walk model used for a
polymer previously — we do not assume that the probabilities for for forward and backward
stepping are equal.

We can then define £ At and k_ At as the probability for a given motor to move one step
to the right and to the left, respectively, in a time interval At, and next write a probability for
the motor to be found at a position x at a time ¢ + At:

plz,t+ At) = ki Atp(x —a,t) + k_Atp(x+a,t) + (1 —k At —k_At)p(x,t),
Motor moved Frrom (z—a)—x  Motor moved Frrom (z+a)—zx Motor stayea,where it was
(5.1
where p(z £ a,t) and p(zx,t) represent the probabilities, respectively, that the motor was at
position z + a and x, at time .
This can be rearranged to give

p(x,t + At) — p(x,t)
At

Without loss of generality, we can let At — 0, allowing us to write

=kyplx —a,t)+k_plx+a,t)— ki p(x,t)—k_p(z,t). (5.2)

p(z,t+ At) — p(zx,t) _ Op(z,t)

A, At o )
and next approximate p(z + a, t) by the Taylor expansion
op(x, t 2 0%p(w,t
p(r £ a,t)~p(x,t)£ aM + L Pz, 1) (5.4)

ox 2 0x2

We can thus rewrite Eq. 5.2 in terms of p(x, t) and its partial derivatives. Noting that the terms
with kop(x, t) at the right hand side cancel, we find

op(x,t) ap(x,t) = a® p(x,t)
at ——a(k+—k,)—+5(k‘++k‘,)w

Ox
Finally, defining a drift velocity v = a(k, — k_) and a diffusion coefficient D = (a?/2)(k, +
k_), this yields the so-called Smoluchowski equation

Ip(z,1) op(x,t) = 0p(x,t)
= — D )
ot v ox + 0x?
In the case of v = 0, this reduces to the diffusion equation, a very general equation that, e.g.,

describes the diffusion of molecules in solution or the spreading of heat in a material, with
p(z,t) replaced by, respectively, a concentration ¢(x, t) or temperature 7'(x, t).

(5.5)

(5.6)



Diffusion & Smoluchowski equation
ap(x,t)/ot = -v dp(x,t)lox + D d?p(x,t)/ox?

Solution: p(x,t) = 1/N(41Dt) exp[-(x-vt)2/4Df]

I
J\

position x

p(x, 1)

>



Generally, we need multi-state models...
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2. Active mechanical components

b. Polymerisation motors
- Moving cells
- Simple models



Cells are not static structures




They crawl around...




Actin polymerisation
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Figure 15.2b Physical Biology of the Cell, 2ed. (© Garland Science 2013)



Polymerisation motor pushing against wall
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What determines rate?
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Figure 16.45 Physical Biology of the Cell (© Garland Science 2009)
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Polymerisation motor (gap-opening limited)
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Solving the Smoluchowski equation
op(x,t)/ot = -Fly dp(x,t)/ox + D d?p(x,t)/ox?
Einstein relation : yD = kT
Boundary conditions : p(8) = 0 and J,% p(x)dx = 1
Solution:  v=DI/d (Folk;T)*/(exp[FolkT] — 1 — Folk,T)

Low force : v=2D/d
High force : v = DI& (Fo/k;T)* exp[-Folk,T]



Measure the polymerisation force

microtubule growing barrier

towards barrier \
glass slide

Figure 10.33 Physical Biology of the Cell (© Garland Science 2009)

Dogterom & Yurke, Science 278, 856 (1997)



Experiments to detect polymerisation force
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2. Active mechanical components

b. Polymerisation motors

- More cytoskeleton dynamics



Cytoskeletal polymerisation

nucleation elongation steady state
(lag phase) (growth phase) (equilibrium phase)
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Figure 15.19a Physical Biology of the Cell, 2ed. (© Garland Science 2013)



Polymer in equilibrium

* I:)n + I:)1 « I:)n+1
* Ky = [PAlIP1J[P ]

Assume now K, independent of n:

* Ky =[PqIPJIP,] => [Py] =[P4]%/ Ky

* Ky =[PIIPJ[Ps] = [PVIP3] [P414 Ky => [P3] = [P4]¥/ K7
* [Pn] =Ky ([P1) Ky )" = Kyexpln In[[P]/ Ky ] = Ky €77

Probability distribution:
<n>=["ne®dn/| e dn=1/a=1/In[K,/[P]]



Distribution of actin filament lengths
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Figure 15.23 Physical Biology of the Cell, 2ed. (© Garland Science 2013)



Cytoskeletonal filaments are not static
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“Dynamic instability” of microtubules



Models for polymerisation
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Figure 15.34 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

At cap end :

ATP or GTP bound

monomers (unhydrolysed)
=> Growth

ADP or GDP bound

monomers (hydrolysed)
=> Shrinkage

hydrolyzed
monomers
Figure 15.35 Physical Biology of the Cell, 2ed. (© Garland Science 2013)
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2. Active mechanical components

c. Other motors (rotation, translocation, ...)

3. Viscous fluids



A

Optical tweezers experiments

l0ad Bead ~ 1 um

Molec. motor ~ 1 nm
fdrag -—

For comparison:
Earth ~ 10* km
Mt. Everest ~ 10 km

motor Co
domains ADP
(ATPase)

Figure 12.13 Physical Biology of the Cell, 2ed. (© Garland Science 2013)



Jiggling water molecules cause friction
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Figure 12.2 Physical Biology of the Cell, 2ed. (© Garland Science 2013)



Navier-Stokes equation: Flow around sphere

© = mass density

v = velocity

p = pressure
n = viscosity
V = differential

pov/ot+p(veV)v
~p VR +~p VR

~oVvR In +

Inertial terms

Reynolds number

-(Vp)R?/Inv + ~1

VISCOUusS term



Aristotle's mechanics

Aristotle (ca. 350 BC):

“velocity proportional to force”

Galileo, Newton et al. (ca. 1600 AD):
F=ma

F=0 <=> v =const.

Stokes (ca. 1850 AD) and low Reynolds
number (- 2015): F = const. v




Reynold’s number
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Laminar flow
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Re 10-40

Vortices form and
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Re 40-20,000
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.

Figure 12.12 Physical Biology of the Cell, 2ed. (© Garland Scie

nce 2013)




A

Optical tweezers experiments

Stokes law:
F=6mTnRvV

=6 1 * 103 Ns/m? *
0.5 um * 10° m/s

~ 107 pN
Motor force ~ 5 pN

fdrag -—

motor Co
domains ADP
(ATPase)

Figure 12.13 Physical Biology of the Cell, 2ed. (© Garland Science 2013)



Stopping distance of a bacterium

The E-Coli Bacterium

©2001 HowStuffWorks




Stopping distance versus size (in water)
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How far does a bacteria need to swim to

outrun (out-swim) diffusion?

Bacterial velocity:

distance (um)

v =30 um/s

80

w constant velocity

60 -
Diffusion of molecule
. 402 diffusion
In water: '

20 -
D =500 ym?/s ;

""""""""""""""" time (s)
1.5 2.0 2.5

Recall polymer <R?> = [ a, with L “path length” ~ time



3. Viscous fluids



More and more complex...




3. Viscous fluids

Bonus material: Purcell paper (1976)



Life at low Reynolds number

E. M. Purcell

Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138

(Received 12 June 1976)

Editor’s note: This is a reprint (slightly edited) of a paper of the same title that appeared in
the book Physics and Our World: A Symposium in Honor of Victor F. Weisskopf, published
by the American Institute of Physics (1976). The personal tone of the original talk has been
preserved in the paper, which was itself a slightly edited transcript of a tape. The figures
reproduce transparencies used in the talk. The demonstration involved a tall rectangular
transparent vessel of corn syrup, projected by an overhead projector turned on its side. Some

essential hand waving could not be reproduced.

This is a talk that I would not, I’'m afraid, have the nerve
to give under any other circumstances. It’s a story I've been
saving up to tell Viki. Like so many of you here, I've enjoyed
from time to time the wonderful experience of exploring
with Viki some part of physics, or anything to which we can
apply physics. We wander around strictly as amateurs
equipped only with some elementary physics, and in the end,
it turns out, we improve our understanding of the elemen-
tary physics even if we don’t throw much light on the other
subjects. Now this is that kind of a subject, but I have still
another reason for wanting to, as it were, needle Viki with
it, because I’m going to talk for a while about viscosity.
Viscosity in a liquid will be the dominant theme here and
you know Viki’s program of explaining everything, in-
cluding the heights of mountains, with the elementary
constants. The viscosity of a liquid is a very tough nut to
crack, as he well knows, because when the stuff is cooled by
merely 40 degrees, its viscosity can change by a factor
of a million. I was really amazed by fluid viscosity in the
early days of NMR, when it turned out that glycerine was
just what we needed to explore the behavior of spin relax-
ation. And yet if you were a little bug inside the glycerine,
looking around, you wouldn’t see much change in your
surroundings as the glycerine cooled. Viki will say that he
can at least predict the logarithm of the viscosity. And that,
of course, is correct because the reason viscosity changes
is that it’s got one of these activation energy things and what
he can predict is the order of magnitude of the exponent.
But it’s more mysterious than that, Viki, because if you look
at the Chemical Rubber Handbook table you will find that
there is almost no liquid with viscosity much lower than that
of water. The viscosities have a big range but they stop at
the same place. 1 don’t understand that. That’s what I'm
leaving for him.!

Now, I'm going to talk about a world which, as physicists,
we almost never think about. The physicist hears about
viscosity in high school when he’s repeating Millikan’s oil
drop experiment and he never hears about it again, at least
not in what I teach. And Reynolds’s number, of course, is
something for the engineers. And the low Reynolds number
regime most engineers aren’t even interested in—except
possibly chemical engineers, in connection with fluidized
beds, a fascinating topic I heard about from a chemical
engineering friend at MIT. But I want to take you into the
world of very low Reynolds number—a world which is in-
habited by the overwhelming majority of the organisms in
this room. This world is quite different from the one that
we have developed our intuitions in.

I might say what got me into this. To introduce something
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that will come later, I’'m going to talk partly about how
microorganisms swim. That will not, however, turn out to
be the only important question about them. I got into this
through the work of a former colleague of mine at Harvard,
Howard Berg. Berg got his Ph.D. with Norman Ramsey,
working on a hydrogen maser, and then he went back into
biology which had been his early love, and into cellular
physiology. He is now at the University of Colorado at
Boulder, and has recently participated in what seems to me
one of the most astonishing discoveries about the questions
we’re going to talk about. So it was partly Howard’s work,
tracking E. coli and finding out this strange thing about
them, that got me thinking about this elementary physics
stuff.

Well, here we go. In Fig. 1, you see an object which is
moving through a fluid with velocity v. It has dimension a.
In Stokes’s law, the object is a sphere, but here it’s anything;
n and p are the viscosity and density of the fluid. The ratio
of the inertial forces to the viscous forces, as Osborne
Reynolds pointed out slightly less than a hundred years ago,
is given by avp/n or av /v, where v is called the kinematic
viscosity. It’s easier to remember its dimensions: for water,
v =~ 1072 cm?/sec. The ratio is called the Reynolds number
and when that number is small the viscous forces dominate.
Now there is an easy way, which I didn’t realize at first, to
see who should be interested in small Reynolds numbers.
If you take the viscosity # and square it and divide by the
density, you get a force (Fig. 2). No other dimensions come
in at all. 2/ p is a force. For water, sincen ~ 1072 and p =
1, 72/p ~ 10~* dyn. That is a force that will tow anything,
large or small, with a Reynolds number of order of magni-
tude 1. In other words, if you want to tow a submarine with
Reynolds number 1 (or strictly speaking, 1/6x if it’s a
spherical submarine) tow it with 10~ dyn. So it’s clear in
this case that you’re interested in small Reynolds number
if you’re interested in small forces in an absolute sense. The
only other people who are interested in low Reynolds
number, although they usually don’t have to invoke it, are
the geophysicists. The Earth’s mantle is supposed to have
a viscosity of 102! P. If you now work out #%/p, the force is
104! dyn. That is more than 10° times the gravitational force
that half the Earth exerts on the other half! So the conclu-
sion is, of course, that in the flow of the mantle of the Earth
the Reynolds number is very small indeed.

Now consider things that move through a liquid (Fig. 3).
The Reynolds number for a man swimming in water might
be 104, if we put in reasonable dimensions. For a goldfish
or a tiny guppy it might get down to 102. For the animals
that we’re going to be talking about, as we’ll see in a mo-
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Figure 1.

ment, it’s about 10~4 or 10~5. For these animals inertia is
totally irrelevant. We know that F = ma, but they could
scarcely care less. I'll show you a picture of the real animals
in a bit but we are going to be talking about objects which
are the order of a micron in size (Fig. 4). That’s a micron
scale, not a suture, in the animal in Fig. 4. In water where
the kinematic viscosity is 10~2 cm/sec these things move
around with a typical speed of 30 um/sec. If I have to push
that animal to move it, and suddenly I stop pushing, how

22

o force

for wofe/, ??1—._ /0—4dynex

This Force will tow anything ;
1arge or small, ot R=/

Eor?hs nantle has ?k"/a"
2 Ll
?.2_ = /0 dyne.}

jD
R &L

Figure 2.
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Figure 3.

far will it coast before it slows. down? The answer is, about
0.1 A. And it takes it about 0.6 usec to slow down. I think
this makes it clear what low Reynolds number means. In-
ertia plays no role whatsoever. If you are at very low
Reynolds number, what you are doing at the moment is
entirely determined by the forces that are exerted on you
at that moment, and by nothing in the past.?

It helps to imagine under what conditions a man would
be swimming at, say, the same Reynolds number as his own
sperm. Well, you put him in a swimming pool that is full of
molasses, and then you forbid him to move any part of his
body faster than 1 cm/min. Now imagine yourself in that
condition: you’re under the swimming pool in molasses, and
now you can only move like the hands of a clock. If under
those ground rules you are able to move a few meters in a
couple of weeks, you may qualify as a low Reynolds number
swimmer.

I want to talk about swimming at low Reynolds number
in a very general way. What does it mean to swim? Well,
it means simply that you are in some liquid and are allowed
to deform your body in some manner. That’s all you can do.

—>
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0.3 ruicrosec,
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Figure 4.
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Figure 5.

Move it around and move it back. Of course, you choose
some kind of cyclic deformation because you want to keep
swimming, and it doesn’t do any good to use a motion that
goes to zero asymptotically. You have to keep moving. So,
in general, we are interested in cyclic deformations of a body
on which there are no external torques or forces except those
exerted by the surrounding fluid. In Fig. 5, there is an object
which has a shape shown by the solid line; it changes its
shape to the dashed contour and then it changes back. When
it finally gets back to its original shape, the dotted contour,
it has moved over and rotated a little. It has been swimming.
When it executed the cycle, a displacement resulted. If it
repeats the cycle, it will, of course, effect the same dis-
placement, and in two dimensions we’d see it progressing
around a circle. In three dimensions its most general tra-
jectory is a helix consisting of little kinks, each of which is
the result of one cycle of shape change.

There is a very funny thing about motion at low Reynolds
number, which is the following. One special kind of swim-
ming motion is what I call a reciprocal motion. That is to
say, [ change my body into a certain shape and then 1 go
back to the original shape by going through the sequence
in reverse. At low Reynolds number, everything reverses
just fine. Time, in fact, makes no difference—only config-

Navier - Stokes

-vp + 7' F =% PM

/f Q«/:

Time doesnt matter. The pattern of
motion fs the Same, whether slow or fast
whether forward or backward in #ime,

The Scallop Theorem

Figure 6.
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uration. If T change quickly or slowly, the pattern of motion
is exactly the same. If you take the Navier-Stokes equation
and throw away the inertia terms, all you have left is V2

- = p/n, where p is the pressure (Fig. 6). So, if the animal tries

to swim by a reciprocal motion, it can’t go anywhere. Fast
or slow, it exactly retraces its trajectory and it’s back where
it started. A good example of that is a scallop. You know,
a scallop opens its shell slowly and closes its shell fast,
squirting out water. The moral of this is that the scallop at
low Reynolds number is no good. It can’t swim because it
only has one hinge, and if you have only one degree of
freedom in configuration space, you are bound to make a
reciprocal motion. There is nothing else you can do. The
simplest animal that can swim that way is an animal with
two hinges. I don’t know whether.one exists but Fig. 7 shows
a hypothetical one. This animal is like a boat with a rudder
at both front and back, and nothing else. This animal can
swim. All it has to do is go through the sequence to config-
urations shown, returning to the original one at Ss. Its
configuration space, of course, is two dimensional with
coordinates 8y, §,. The animal is going around a loop in that
configuration space, and that enables it to swim. In fact, |
worked this one out just for fun and you can prove from
symmetry that it goes along the direction shown in the
figure. As an exercise for the student, what is it that dis-
tinguishes that direction?

You can invent other animals that have no trouble
swimming. We had better be able to invent them, since we
know they exist. One you might think of first as a physicist,
is a torus. I don’t know whether there is a toroidal animal,
but whatever other physiological problems it might face,
it clearly could swim at low Reynolds number (Fig. 8).
Another animal might consist of two cells which were stuck
together and were able to roll on one another by having

E. M. Purcell 5



Figure 8.

some kind of attraction here while releasing there. That
thing will “roll” along. I described it once as a combination
caterpillar tractor and bicycle built for two, but that isn’t
the way it really works. In the animal kingdom, there are
at least two other more common solutions to the problem
of swimming at low Reynolds number (Fig. 9). One might
be called the flexible oar. You see, you can’t row a boat at
low Reynolds number in molasses—if you are sub-
merged—because the stiff oars are just reciprocating things.
But if the oar is flexible, that’s not true, because then the
oar bends one way during the first half of the stroke and the
other during the second half. That’s sufficient to elude the
theorem that got the scallop. Another method, and the one
we’ll mainly be talking about, is what I call a corkscrew. If
you keep turning it, that, of course, is not a reciprocal
change in configuration space and that will propel you. At
this point, I wish I could persuade you that the direction in
which this helical drive will move is not obvious. Put your-

The flexible oar

The corkscrew
Corkicrew

Figure 9.
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self back in that swimming pool under molasses and move
around very, very slowly. Your intuitions about pushing
water backwards are irrelevant. That’s not what counts.
Now, unfortunately, it turns out that the thing does move
the way your naive, untutored, and actually incorrect
argument would indicate, but that’s just a pedagogical
misfortune we are always running into.

Well, lets look at some real animals (Fig. 10). This figure
I've taken from a paper of Howard Berg that he sent me.
Here are three real swimmers. The one we're going to be
talking about most is the famous animal, Escherichia coli,
at A, which is a very tiny thing. Then there are two larger
animals. I’ve copied down their Latin names and they may
be old friends to some of you here. This thing (S. volutans)
swims by waving its body as well as its tail and roughly
speaking, a spiral wave runs down that tail. The bacterium
E. coli on the left is about 2 um long. The tail is the part that
we are interested in. That’s the flagellum. Some E. coli cells
have them coming out the sides; and they may have several,
but when they have several they tend to bundle together.
Some cells are nonmotile and don’t have flagella. They live
perfectly well, so swimming is not an absolute necessity for
this particular animal, but the one in the figure does swim.
The flagellum is only about 130 A in diameter. It is much
thinner than the cilium which is another very important
kind of propulsive machinery. There is a beautiful article
on cilia in this month’s Scientific American.? Cilia are
about 2000 A in diameter, with a rather elaborate apparatus
inside. There’s not room for such apparatus inside this fla-
gellum.

For a long time there has been interest in how the fla-
gellum works. Classic work in this field was done around
1951, as I’m sure some of you will remember, by Sir Geof-
frey Taylor, the famous fluid dynamicist of Cambridge. One
time I heard him give a fascinating lecture at the National
Academy. Out of his pocket at the lecture he pulled his
working model, a cylindrical body with a helical tail driven
by a rubber-band motor inside the body. He had tested it
in glycerine. In order to make the tail he hadn’t just done
the simple thing of having a turning corkscrew, because at
that time nearly everyone had persuaded themselves that
the tail doesn’t rotate, it waves. Because, after all, to rotate
you’d have to have a rotary joint back at the animal. So he
had sheathed the turning helix with rubber tubing anchored
to the body. The body had a keel. I remember Sir Geoffrey
Taylor saying in his lecture that he was embarrassed that
he hadn’t put the keel on it first and he’d had to find out that

E. M. Purcell 6
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1e needed it. There has since been a vast literature on this
subject, only a small part of which I'm familiar with. But
1t that time G. L. Taylor’s paper in the Proceedings of the
Royal Society could conclude with just three references:
H. Lamb, Hydrodynamics; G. 1. Taylor (his previous
saper); G. N. Watson, Bessel Functions. That is called
zetting in on the ground floor.

To come now to modern times, | want to show a picture
of these animals swimming or tracking. This is the work of
Howard Berg, and I'll first describe what he did. He started
suilding the apparatus when he was at Harvard. He was
nterested in studying not the actual mechanics of swim-
ning at all but a much more interesting question, namely,
why these things swim and where they swim. In particular,
1e wanted to study chemotaxis in E. coli—seeing how they
sehave in gradients of nutrients and things like that. So he
suilt a little machine which would track a single bacterium
n x, y, z coordinates—just lock onto it optically and track
1. He was able then to track one of these bacteria while it
was behaving in its normal manner, possibly subject to the
influence of gradients of one thing or another. A great ad-
vantage of working with a thing like E. coli is that there are
30 many mutant strains that have been well studied that you
can use different mutants for different things. The next
picture (Fig. 11) is one of his tracks. It shows a projection
an a plane of the track of one bacterium. The little dots are
about 0.1 sec apart so that it was actually running along one
of the legs for a second or two and the speed is typically
20-40 um/sec. Notice that it swims for a while and then
stops and goes off in some other direction. We'll see later
what that might suggest. A year ago, Howard Berg went
>ut on a limb and wrote a paper in Nature* in which he
argued that, on the basis of available evidence, E. coli must
swim by rotating their flagella, not by waving them. Within
the year a very elegant, crucial experiment by Silverman
and Simon at UC-San Diego showed that this fact is the
case.>6 Their experiment involved a mutant strain of E. coli
bacteria which don’t make flagella at all but only make
something called the proximal hook to which the flagella
would have been attached. They found that with antihook
antibodies they could cause these things to glue together.
And once in a while one of the bacteria would have its hook
glued to the microscope slide, in which case the whole body
rotated at constant angular velocity. And when two hooks
glued together, the two bodies counter-rotated, as you would
sxpect. It’s a beautiful technique. Howard was ready with
his tracker and the next picture’ (Fig. 12) shows his tracker
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following the end of one of these tethered E. coli cells which
is stuck to the microscope slide by antibody at the place
where the flagellum should have been. Plotted here are the
two velocity components ¥, and V. The two velocity
components are 90° out of phase. The point being tracked
is going in a circle. In the middle of the figure, you see a 90°
phase change in one component, a reversal of rotation. They
can rotate hundreds of revolutions at constant speed and
then turn around and rotate the other way. Evidently the
animal actually has a rotary joint, and has a motor inside
that’s able to drive a flagellum in one direction or the other,
a most remarkable piece of machinery.

I got interested in the way a rotating corkscrew can
propel something. Let’s consider propulsion in one direction
only, parallel to the axis of the helix. The helix can translate
and it can rotate; you can apply a force to it and a torque.
It has a velocity v and an angular velocity Q. And now re-
member, at low Reynolds number everything is linear.
When everything is linear, you expect to see matrices come
in. Force and torque must be related by matrices with
constant coefficients, to linear and angular velocity. I call
this little 2 X 2 matrix the propulsion matrix (Fig. 13). If
I knew its elements 4, B, C, D, I could then find out how
good this rotating helix is for propelling anything.
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Well, let’s try to go on by making some assumptions. If
two corkscrews or other devices on the same shaft are far
enough from one another so that their velocity patterns
don’t interact, their propulsive matrices just add. If you
allow me that assumption, then there is a very nice way,
which I don’t have time to explain, of proving that the
propulsion matrix must be symmetrical (Fig. 14). So ac-
tually the motion is described by only three constants, not
four, and they are very easily measured. All you have to do
is make a model of this thing and drop in a fluid at you are
interested in or not, because these constants are independent
of that. And so I did that and that’s my one demonstration.
I thought this series of talks ought to have one experiment
and there it is. We’re looking through a tank not of glycerine
but of corn syrup, which is cheaper, quite uniform, and has
a viscosity of about 50 P or 5000 times the viscosity of water.
The nice part of this is you can just lick the experimental
material off your fingers.

Motion at low Reynolds number is very majestic, slow,
and regular. You’'ll notice that the model is actually rotating
but rather little. If that were a corkscrew moving through
a cork of course, the pattern in projection wouldn’t change.
It’s very very far from that, it’s slipping, so that it sinks by
several wavelengths while it’s turning around once. If the
matrix were diagonal, the thing would not rotate at all. So
all you have to do is just see how much it turns as it sinks and
you have got a handle on the off-diagonal element. A nice
way to determine the other elements is to run two of these
animals, one of which is a spiral and the other is two spirals,
in series, of opposite handedness. The matrices add and with
two spirals of opposite handedness, the propulsion matrix
must be diagonal (Fig. 14). That’s not going to rotate; it
better not.

The propulsive efficiency is more or less proportional to
the square of the off-diagonal element of the matrix. The
off-diagonal element depnds on the difference between the
drag on a wire moving perpendicular to its length and the
drag on a wire moving parallel to its length (Fig. 15). These
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are supposed to differ in a certain limit by a factor of 2. But
for the models I've tested that factor is more like 1.5. Since
it’s that factor minus 1 that counts, that’s very bad for ef-
ficiency. We thought that if you want something to rotate
more while sinking, it would be better not to use a round
wire. Something like a slinky ought to be better. I made one
and measured its off diagonal elements. Surprise, surprise,
it was no better at all! I don’t really understand that, because
the fluid mechanics of these two situations is not at all
simple. In each case there is a logarithmic divergence that
you have to worry about, and the two are somewhat dif-
ferent in character. So that theoretical ratio of two I re-
ferred to is probably not even right.

When you put all this in and calculate the efficiency, you
find that it’s really rather low even when the various pa-
rameters of the model are optimized. For a sphere which
is driven by one of these helical propellers (Fig. 16), I will
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define the efficiency as the ratio of the work that I would
have to do just to pull that thing along to what the man in-
side it turning the crank has to do. And that turns out to be
about 1%. | worried about that result for a while and tried
to get Howard interested in it. He didn’t pay much attention
to it, and he shouldn’t have, because it turns out that effi-
siency is really not the primary problem of the animal’s
motion. We’ll see that when we look at the energy re-
quirement. How much power does it take to run one of these
things with a 1% efficient propulsion system, at this speed
in these conditions? We can work it out very easily. Going
30 um/sec, at 1% efficiency will cost us about 2 X 108
ergs/sec at the motor. On a per weight basis, that’s a2 0.5
W /kg, which is really not very much. Just moving things
around in our transportation system, we use energy at 30
or 40 times that rate. This bug runs 24 h a day and only uses
).5 W /kg. That’s a small fraction of its metabolism and its
:nergy budget. Unlike us, they do not squander their energy
budget just moving themselves around. So they don’t care
whether they have a 1% efficient flagellum or a 2% efficient
flagellum. It doesn’t really make that much difference.
They’re driving a Datsun in Saudi Arabia.

So the interesting question is not how they swim. Turn
anything—if it isn’t perfectly symmetrical, you’ll swim. If
the efficiency is only 1%, who cares. A better way to say it
s that the bug can collect, by diffusion through the sur-
rounding medium, enough energetic molecules to keep
moving when the concentration of those molecules is 10~°
M. I've now introduced the word diffusion. Diffusion is
mportant because of another very peculiar feature of the
world at low Reynolds number, and that is, stirring isn’t any
zood. The bug’s problem is not its energy supply; its problem
s its environment. At low Reynolds number you can’t shake
off your environment. If you move, you take it along; it only
zradually falls behind. We can use elementary physics to
look at this in a very simple way. The time for transporting
anything a distance / by stirring, is about /'divided by the
stirring speed v. Whereas, for transport by diffusion, it’s /2
livided by D, the diffusion constant. The ratio of those two
:imes is a measure of the effectiveness of stirring versus that
of diffusion for any given distance and diffusion constant.
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I’'m sure this ratio has someone’s name but I don’t know the
literature and I don’t know whose number that’s called. Call
it S for stirring number.® 1t’s just lv/D. You'll notice by the
way that the Reynolds number was /v /v. v is the kinematic
viscosity in cm?/sec, and D is the diffusion constant in
cm?/sec, for whatever it is that we are interested in fol-
lowing—Ilet us say a nutrient molecule in water. Now, in
water the diffusion constant is pretty much the same for
every reasonably sized molecule, something like 1073
cm?/sec. In the size domain that we’re interested in, of
micron distances, we find that the stirring number S'is 1072,
for the velocities that we are talking about (Fig. 18). In

* other words, this bug can’t do anything by stirring its local

surroundings. It might as well wait for things to diffuse,
either in or out. The transport of wastes away from the
animal and food to the animal is entirely controlled locally
by diffusion. You can thrash around a lot, but the fellow
who just sits there quietly waiting for stuff to diffuse will
collect just as much.

At one time I thought that the reason the thing swims is
that if it swims it can get more stuff, because the medium
is full of molecules the bug would like to have. All my in-
stincts as a physicist say you should move if you want to
scoop that stuff up. You can easily solve the problem of
diffusion in the velocity field represented by the Stokes flow
around a sphere—for instance, by a relaxation method. I
did so and found out how fast the cell would have to go to
increase its food supply. The food supply if it just sits there
is 4waND molecules/sec, where a is the cell’s radius (Fig.
19) and N is the concentration of nutrient molecules. To
increase its food supply by 10% it would have to move at a
speed of 700 um/sec, which is 20 times as fast as it can
swim. The increased intake varies like the square root of the
bug’s velocity so the swimming does no good at all in that
respect. But what it can do is find places where the food is
better or more abundant. That is, it does not move like a cow
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that is grazing a pasture—it moves to find greener pastures.
And how far does it have to move? Well, it has to move far
enough to outrun diffusion. We said before that stirring
wouldn’t do any good locally, compared to diffusion. But
suppose it wants to run over there to see whether there is
more over there. Then it must outrun diffusion, and how do
you do that? Well, you go that magic distance, D/v. So the
rule is then, to outswim diffusion you have to go a distance
which is equal to or greater than this number we had in our
S constant. For typical D and v, you have to go about 30 um
and that’s just about what the swimming bacteria were
doing. If you don’t swim that far, you haven’t gone any-
where, because it’s only on that scale that you could find a
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difference in your environment with respect to molecules
of diffusion constant D (Fig. 20).

Let’s go back and look at one of those sections from
Berg’s track (Fig. 11). You’ll see that there are some little
trips, but otherwise you might ask why did it go clear over
here and stop. Why did it go back? Well, my suggestion is,
and I'd like to put this forward very tentatively, that the
reason it does is because it’s trying to outrun diffusion.
Otherwise, it might as well sit still, as indeed do the mutants
who don’t have flagella. Now there is still another thing that
I put forward with even more hesitation because I haven’t
tried this out on Howard yet. When he did his chemotaxis
experiments, he found a very interesting behavior. If these
things are put in a medium where there is a gradient of
something that they like, they gradually work their way
upstream. But if you look at how they do it and ask what
rules they are using, what the algorithm is to use the current
language, for finding your way upstream, it turns out that
it’s very simple. The algorithm is: if things are getting better,
don’t stop so soon. If, in other words, you plot, as Berg has
done in some of his papers, the distribution of path lengths
between runs and the little stops that he calls “twiddles,”
the distribution of path lengths if they are going up the
gradient gets longer. That’s a very simple rule for working
your way to where things are better. If they’re going down
the gradient, though, they don’t get shorter. And that seems
a little puzzling. Why, if things are getting worse, don’t they
change sooner? My suggestion is that there is no point in
stopping sooner. There is a sort of bedrock length which
outruns diffusion and is useful for sampling the medium.
Shorter paths would be a ridiculous way to sample. It may
be something like that, but as I say, I don’t know. The res-
idue of education that I got from this is partly this stuff
about simple fluid mechanics, partly the realization that
the mechanism of propulsion is really not very important
except, of course, for the physiology of that very myserious
motor, which physicists aren’t competent even to conjecture
about.

I come back for a moment to Osborne Reynolds. That
was a very great man. He was a professor of engineering,
actually. He was the one who not only invented Reynolds
number, but he was also the one who showed what turbu-
lence amounts to and that there is instability in flow, and
all that. He is also the one who solved the problem of how
you lubricate a bearing, which is a very subtle problem that
I recommend to anyone who hasn’t looked into it. But I
discovered just recently in reading in his collected works
that toward the end of his life, in 1903, he published a very
long paper on the details of the submechanical universe, and
he had a complete theory which involved small particles of
diameter 10718 cm. It gets very nutty from there on. It’s a
mechanical model, the particles interact with one another
and fill all space. But I thought that, incongruous as it may
have seemed to put this kind of stuff in between our studies
of the submechanical universe today, I believe that Osborne
Reynolds would not have found that incongruous, and I'm
quite positive that Viki doesn’t.

(1976 footnote) As no one will be surprised to hear, Professor Weisskopf
has recently shown me how this can be explained. I hope he will com-
municate it to AJP readers.

2(1976 footnote) In that world, Aristotle’s mechanics is correct! See A.
Franklin, Am. J. Phys. 44, 527-528 (1976).
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TEACHING

So how do you go about teaching them something new? By mixing what they know
with what they don’t know. Then, when they see vaguely in their fog:something they
recognize, they think, “Ah, | know that.”” And then it’s just one more step to, “Ah, I
know the whole thing.” And their mind thrusts forward into the unknown and they
begin to recognize what they didn’t know before and they increase their powers of
understanding.

—Picasso, in Life with Picasso by Francoise Gilot and Carlton Lake (Nelson, London,
1965), p. 66.
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