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Nanotechnology mid-20th century 

X-ray diffraction 



Biological molecules are not typically 
restricted to one particular state 

Pyne et al., Small (2014). 



Boltzmann distribution 

Probability p of a system being in a state with energy E 
 � exp(-E/kBT) 

 
Examples, for oxygen molecule: 

 p(Grenoble)/p(London) = 98% 
 p(Everest)/p(London) = 33% 

 
When considering (macro-)molecular mechanics, we need 
not only consider the molecular (bending or stretching) 
energy, but the molecular free energy 

Notes 1-2 
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These notes provide some more technical and mathematical details and background mate-
rial for the lecture Mechanics of Molecules and Biological Structures at the European School

on Nanosciences & Nanotechnologies, Grenoble.

1 Boltzmann distribution

The Boltzmann distribution prescribes that

the probability of being in a state of energy E / exp

✓
� E

kBT

◆
, (1.1)

where kB is Boltzmann’s constant (1.38 ⇥ 10

�23 J/K) and T is the absolute temperature. At
room temperature (about 300 K), kBT ⇡ 4.1⇥ 10

�21 J = 4.1 pN nm.
The general derivation of the Boltzmann distribution can be found in textbooks on statisti-

cal mechanics. To make Eq. 1.1 plausible, I will here derive it in the special case of the distri-
bution of gas molecules as a function of height. In that case, the energy of a a gas molecules is
given by

E(h) = mgh , (1.2)

as you may remember from secondary school, where m is the mass of a molecule, g ⇡
9.8 m s�2 the gravitational acceleration, and h the height above a reference surface.

You may also remember the ideal gas law,

PV = nRT , (1.3)

with

P the pressure of the gas;

V the volume of the gas;

n the amount of gas (in moles);

R = kBNA

the gas constant, with N

A

(⇡ 6.0⇥ 10

23 mole�1) the Avogadro constant;
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T is the absolute temperature as previously.

This allows us to write

P =

⇣
n

V

⌘
RT =

✓
nN

A

V

◆
kBT = n

V

kBT , (1.4)

where we define n

V

as the number of gas molecules per unit volume.
Assuming that T does not depend on the height, we can take the derivative

dP
dh

=

✓
dn

V

dh

◆
kBT . (1.5)

To derive the Bolzmann distribution in this case, we also calculate dP/dh in a different
way, as follows.

Given a gas volume of cross section A and height dh, the amount the molecules in this
volume is n

V

Adh, which translates to a force

|dF | = (mg)(n

V

Adh) (1.6)

that is exerted on the gas column below it. Since the pressure P = F/A, we can thus derive
that an height increment dh leads to a change in pressure

dP =

1

A

dF = mgn

V

⇥ (�dh) , (1.7)

where the minus sign refers to the fact that the pressure will go down with increasing height.
Rearranging and equating to the earlier result for dP/dh, Eq. 1.5, we find

dP
dh

= �mgn

V

=

✓
dn

V

dh

◆
kBT . (1.8)

Hence,
dn

V

dh
=

✓
� mg

kBT

◆
n

V

, (1.9)

which is a differential equation with solution

n

V

/ exp

✓
�mgh

kBT

◆
= exp

✓
�E(h)

kBT

◆
. (1.10)

This proves the Boltzmann formula Eq. 1.1 in the special case of an ideal gas, if we realise
that the probability to find a molecule at height h is proportional to the average number of
molecules that can be found at that height, i.e., p(h) / n

V

(h).
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2 Free energy

To understand the concept of free energy, it is useful to again consider the case of molecules
in an ideal gas. As derived in Section 1, the probability of a gas molecule being at height h is

p(h) / exp

✓
�E(h)

kBT

◆
. (2.1)

With E(h) = mgh and recalling the respective altitudes of Grenoble and London, it thus
follows that

probability to find a gas molecule in Grenoble
probability to find a gas molecule in London

=

exp(�mg ⇥ 214 meter/kBT )

exp(�mg ⇥ 115 feet/kBT )
. (2.2)

Since 115 feet corresponds to 35 m and since an O2 molecule has a mass of (32 g/mol)/N
A

=

5.3⇥ 10

�26 kg, the probability to find an an oxygen molecule in Grenoble is

p(Grenoble)
p(London)

= exp

✓
�5.3⇥ 10

�26 kg ⇥ 9.8 m s�2 ⇥ (214� 35) m
4.1 pN nm

◆
(2.3)

= exp

✓
�5.3⇥ 9.8⇥ 179⇥ 10

�5 pN nm
4.1 pN nm

◆
(2.4)

= exp

✓
�0.093 pN nm

4.1 pN nm

◆
= 98% (2.5)

of the probability of finding it in London, which is probably the reason why you feel a only
moderately asphyxiated by now.

Looking at this in another way, we can observe that kBT is large compared to the difference
in potential energy between Grenoble and London, 4.1 pN nm � 0.093 pN nm in Eq. 2.5, i.e.,
thermal fluctuations dominate gravitation as far as the O2 distribution is concerned. If this were
not the case, the trip from London to Grenoble would represent a significant health-and-safety
hazard.

For comparison, the same calculation — ignoring any difference in temperature — gives
us a difference in potential energy of 4.6 pN nm between an O2 molecule on Mount Everest
and one in London. This is very similar to the energy of thermal fluctuations, and leaving us
with a rather hazardous result of only 33%.

To understand the concept of free energy, let us compare the probability of finding a gas
molecule in a CNRS seminar room in Grenoble with the probability of finding a gas molecule
in a tiny lecturer’s office in London. Now we will not only have to take into account the
difference in (gravitational) energy, but also the difference in room size, i.e.,

probability of gas molecule in seminar room
probability of gas molecule in lecturer’s office

=

Vseminar room

Vlecturer’s office

exp(�EGrenoble/kBT )

exp(�ELondon/kBT )
, (2.6)

where EGrenoble and ELondon refer to the potential energy of a gas molecule in Grenoble and
London, respectively, and Vlecturer’s office and Vseminar room to the respective sizes of the seminar
room and the lecturer’s office.
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To make this result more general, we can assume that a gas molecule occupies a (small)
volume ⌫, such that we can define its total number of distinguishable positions W = V/⌫ for
a macroscopic volume V . With WGrenoble = Vseminar room/⌫ and With WLondon = Vlecturer’s office/⌫,
we can write

probability of molecule in seminar room
probability of molecule in lecturer’s office

=

exp(�(EGrenoble + TkB lnWGrenoble)/kBT )

exp(�(ELondon + TkB lnWLondon)/kBT )

(2.7)

=

exp(�FGrenoble/kBT )

exp(�FLondon/kBT )
, (2.8)

where
F = E � TkB lnW = E � TS (2.9)

is the Helmholtz free energy, and
S = kB lnW (2.10)

the entropy.
In this particular example Vseminar room � Vlecturer’s office, such that it is much more likely to

find a molecule in the seminar room in Grenoble than it is to find a molecule in the lecturer’s
office in London, even though the molecule in Grenoble has a higher potential energy.

Summarising, if the energy difference between two states is small compared to the energy
of thermal fluctuations (kBT ), probabilities are dominated by the number of possible configu-
rations (positions) for the molecule at each particular energy. Hence, entropy is important, and
in general the most favourable state is the one with the lowest free energy.
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1.  Effect of fluctuations on mechanics 
a.  Single-molecule mechanics 
 



Single molecule mechanics: experiments 

Atomic Force Microscopy Magnetic Tweezers 

Optical Tweezers 



Molecular stretching on a 3D lattice 

F 

m 

This orientation (down) lowers the potential energy by Fa 

This orientation (up) raises the potential energy by Fa 

This orientation does not change the potential energy a 

<L1>  =  
-a exp(- Fa/kBT) + a exp(+Fa/kBT) + 0 + 0 + 0 + 0   

+ 

- exp(- Fa/kBT) + exp(+Fa/kBT) + 4 exp(0)   

  =  
2 sinh(Fa/kBT) 

4 + 2 cosh(Fa/kBT) 

<L> 

Ltot 
  ≈  

Fa 

3 kBT 
for Fa << kBT 

Notes 3 



3 Gaussian spring

The Boltzmann distribution can help us to predict the force-extension relation for a molecular-
scale chain of paperclips, as a model for, e.g., DNA. If this chain is stretched by a force F

along the z direction and we assume for simplicity that each paperclip can only be oriented
parallel to the three axes (x, y and z) of a cartesian coordinate system, we can derive the
average end-to-end distance of the chain

hLi = NhL1i , (3.1)

where N is the number of paperclips on the chain, and hL1i the average projection of a paper-
clip along the pulling direction,

hL1i =
a exp(Fa/kBT )� a exp(�Fa/kBT )

4 + exp(Fa/kBT ) + exp(�Fa/kBT )
. (3.2)

Here a is the paperclip length such that Ltot = Na is the stretched length of the chain. Hence

hLi = exp(Fa/kBT )� exp(�Fa/kBT )

4 + exp(Fa/kBT ) + exp(�Fa/kBT )
⇥ Ltot . (3.3)

A similar result can be derived if one lets the paperclips be oriented in arbitrary direction, i.e.,
not limited to the cartesian axes. We can now consider three special cases:

• Fa � kBT , such that hLi ⇡ exp(Fa/kBT )/ exp(Fa/kBT )⇥ Ltot = Ltot, i.e., the chain
is completely straightened.

• F = 0, which implies that hLi = 0, i.e., without a force, the two ends of the chain are
on average at the same position.

• Fa ⌧ kBT , such that for small forces, the average end-to-end distance can be approxi-
mate by a Taylor expansion, and begins to deviate from zero according to

hLi ⇡ (1 + Fa/kBT )� (1� Fa/kBT )

4 + (1 + Fa/kBT ) + (1� Fa/kBT )
⇥ Ltot ⇡

2Fa/kBT

6

Ltot . (3.4)

This can be rewritten as
F ⇡ 3kBT

aLtot
hLi = k

L

hLi , (3.5)

which is identical to Hooke’s law if we take hLi as an extension and k

L

= 3kBT/(aLtot)

as a spring constant.

This chain of paperclips will thus behave as flexible cord that already starts behaving as a
(so-called Gaussian) spring when its two ends are very close together, and that only at much
larger forces may behave as an elastic cord under tension, going from completely straightened
to over-stretched.
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Force-extension experiments 

Gaussian spring 



Force-extension curve for dsDNA 

Freely jointed chain / 
random walk model 

E
xperim

ent &
 

�w
orm

-like chain
� 



Random-walk models (without applied force) 

Number of ways W to 
have nr of the total N 
segments pointing to 
the right, in 1D: 

N! 

nr !(N-nr)! ` W(nr;N) =  

Probability: 
p(nr;N) =W(nr;N) (½)N 

 
End-to-end distance: 
R = (nr - nl) a 



Probability distribution for end-to-end 
distance of a macromolecule 

Note: 
 
<R> = 0 
 
<R2> ≠ 0 

Notes 4 



4 Macromolecules as random walks

The random-walk model is a commonly used to describe the behaviour of polymers and flex-
ible macromolecules. It considers a polymer as a chain of segments (cf. chain of paperclips)
that can freely rotate with respect to each other. These segments are of a length a over which
the polymer can be considered roughly straight, are considered as steps in a random walk. To
illustrate the principle, I will here derive the probability distribution for the end-to-end distance
R of a one-dimensional random walk, where it is understood that R can both be positive and
negative.

In one dimension, each step (or polymer segment) can be either to the right or to the left.
Let us define n

r

as the total number of steps to the right, n
l

the total number of steps to the left,
and N = n

r

+n

l

the total number number of steps such that the contour length of the polymer
L = Na. The end-to-end distance is thus given by

R = (n

r

� n

l

) a . (4.1)

Since n
l

= N � n

r

and N is fixed, we only need to know n

r

to determine R for any particular
configuration. We thus need to calculate the probability p(n

r

;N) that of the N segments, n
r

are pointing to the right. This probability follows from

p(n

r

;N) = (the probability of any particular sequence of steps or segment orientations)
⇥ (the number of these sequences that contain n

r

steps to the right, W (n

r

;N)) . (4.2)

If there is no external force applied to the polymer, there are equal probabilities (12 ) for a
segment to point to the right or to the left. Hence

p(n

r

;N) =

�
1
2

�
N ⇥W (n

r

;N) =

�
1
2

�
N

N !

n

r

!(N � n

r

)!

. (4.3)

where W (n

r

;N) follows from the total number of ways N ! to arrange N segments all in
different orientations, and next taking into account that of these N segments, n

r

have identical,
indistinguishable orientations, and similar for n

l

= N � n

r

.
The next steps of the derivation involve (i) substituting n

r

=

N

2 (1 +R/(Na)), (ii) making
use of the Sterling approximation for n � 1, lnn! ⇡ n lnn � n +

1
2 ln(2⇡n), (iii) Taylor

expansions for terms including (1±R/(NA)) for R/(NA) ⌧ 1, and normalisation such thatR
p(R;N)dR = 1, to yield the final result

p(R;N) ⇡ 1p
2⇡Na

2
exp

✓
� R

2

2Na

2

◆
, (4.4)

which is a normal distribution.
Using this distribution, we can calculate

hRi =
Z +1

�1
p(R;N)RdR = 0 (4.5)

and the variance

hR2i =
Z +1

�1
p(R;N)R

2dR = Na

2
= La , (4.6)

which provides a measure of the average absolute end-to-end distance.
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1.  Effect of fluctuations on mechanics 
a.  Single-molecule mechanics 

  - DNA size in solution 
 



Relevant length scales of macromolecule 

•  Persistence length ξp 

•  Contour length L 

•  Kuhn length: length of step a 

Random walk model: 

a = 2ξp 

L = Na 

Kuhn length = a 



How long is DNA in solution? 
•  DNA: persistence length  ξp ≈ 50 nm 

•  Contour length L ≈ 0.34 nm x Nbase pairs 

•  √<R 2> = √(2Lξp) ≈ 0.82 √(Nbase pairsξp) nm 

 

•  Alternative measure of polymer size: radius of gyration RG 

•  <RG
2> = 1/N ∑<(Ri – RCM)2> ≈ 0.34 √(Nbase pairsξp) nm 

•  RCM = centre of mass 

Typical human chromosome: ~ 108 bp 
 Contour length ~ 3 cm 
  √<R 2> ~ 60 µm 



Size of DNA in solution 

Size of �average� nucleus in mammalian cells: ~ 6 µm ! 



1.  Effect of fluctuations on mechanics 
a.  Single-molecule mechanics 

  - DNA size in solution 
  - Gene repression 

 



Central dogma 

DNA    mRNA       proteins 
transcription translation

signal transduction

gene regulation



Regulation of gene expression 
Lac repressor prevents 

expression of proteins 
that are necessary for 
digestion of lactose 



Probability of loop formation 

Number of ways W to 
make a loop in chain of N 
segments in 1D model => 
nr = nl = N/2 

N! 

(N/2)! (N/2)! ` W(N/2,N) =  

Probability: 
ploop =W(N/2,N) (½)N 

If N>>1, 
Ploop  ≈ √(2/πN) 

  = √(2a/π) 1/√(Na) 
  � 1/√(loop length) 

 
   

 
 



Probability of loop formation 



1.  Effect of fluctuations on mechanics 
a.  Single-molecule mechanics 

  - DNA size in solution 
  - Gene repression 

b.  Multi-molecule mechanics 
  - Polymer brush & nuclear pores 



Polymer brush 

F 

Israelachvili (2011). Intermolecular and surface forces, 3° ed. 

Side view Top view 

Terry, L. J. & Wente, S. R. Eukaryot (2009). Cell 8, 1814–27. 

Nuclear pore complex 



500 nm 

16 pN/nm 0 

0 80 nm 

100 nm -100 0 

100 nm -100 0 

0 

-40 

50 
nm 

Height: 

Stiffness: 

Nuclear pore nanomechanics 



Entropic)brush)

Gel)

In-silico indentation of nuclear pores 



Comparison with experiment 

“Entropic)brush”)scenario)
“Gel”)scenario)
Experimental)data)



1.  Effect of fluctuations on mechanics 
a.  Single-molecule mechanics 

  - DNA size in solution 
  - Gene repression 

b.  Multi-molecule mechanics 
  - Polymer brush & nuclear pores 

c.  Mechanics of 2D assemblies 
  - Membrane pore formation 





Lipid membranes 

What is the cost of drilling a hole in such a membrane? 



The answer: Entropy & hydrophobicity 

S = kB ln[number of configurations] 

ΔS = kB ln 3 - kB ln 6 = - kB ln 2 , per H2O molecule 

Notes 2 



Free energy cost of 10 nm hole… 

5 nm 10 nm 

Hydrophobic tails of lipids exposed over an area corresponding 

to the side wall of the pore: 2π (5 nm) (5 nm) = 50π nm2  

~10 H2O molecules nm-2  =>   

 Free energy = - TΔS = (10 nm-2) × kBT ln 2 ≈ 7 kBT nm-2 

Free energy cost of hole: 50π × 7 kBT ≈ 103 kBT  !!! 



Bacterial nanodrills: 
Cholesterol-dependent cytolysins 



Bacterial (suilysin) nanodrills at work 

1 + DTT 2 3 4 5 6 

200 nm 



1. Effect of fluctuations on mechanics 
 a. Single-molecule mechanics 
  - DNA size in solution 
  - Gene repression 
 b. Multi-molecule mechanics 
  - Polymer brush & nuclear pores 
 c. Mechanics of 2D assemblies 
  - Membrane pore formation 

 
2. Active mechanical components 



Cytoskeleton: The cell's spatial organisation 

Green: 
- Microtubules 
 
Red: 
- Actin filaments 
 
Blue: 
- Nucleus 



Separating chromosomes during mitosis 

microtubules 

 chromosomes 

centromeres 

mitotic spindle



Persistence lengths: 
 

 ξp tubulin ~ 1mm 
 ξp actin ~ 10 µm 
 ξp IF < 1 µm 

Actin speckles 
in the leading 
edge of an 
XTC cell 
(Naoki 
Watanabe, 
Kyoto)‏ 

Filamental structures in cells 



Actin 
filaments 
 
 
 
 
 
 
Microtubules 

ξp = 15 µm

ξp = 6 mm



1. Effect of fluctuations on mechanics 
 
2. Active mechanical components 

 a. Molecular motors 
  - Muscles 
  - Example of myosin V 
  - Diffusion / Smoluchowksi equation 



A look inside a muscle 



50 nm

Walker et al., Nature (2000)

Electron microscopy 



Some translational motors 



Molecular motors, example of Myosin V 



Kodera et al., Nature (2010)

Actin fixed, myosin moves… 



Myosins fixed, actin moves… 



One-state model 
Notes 5 



5 Random walking, diffusion, and Smoluchowski equation

Random walks can be described in various ways and have wide applicability. For example, we
can consider a molecular motor walking along a one-dimensional filament with steps of length
a. For simplicity, we consider only a so-called one-state model of such a motor, i.e., at each
position the motor can only be in a single state. Such a motor is equivalent to a random walker
that can take a step forward or backward, where — unlike the random walk model used for a
polymer previously — we do not assume that the probabilities for for forward and backward
stepping are equal.

We can then define k+�t and k��t as the probability for a given motor to move one step
to the right and to the left, respectively, in a time interval �t, and next write a probability for
the motor to be found at a position x at a time t+�t:

p(x, t+�t) = k+�t p(x� a, t)| {z }
Motor moved from (x�a)!x

+ k��t p(x+ a, t)| {z }
Motor moved from (x+a)!x

+(1� k+�t� k��t)p(x, t)| {z }
Motor stayed where it was

,

(5.1)
where p(x ± a, t) and p(x, t) represent the probabilities, respectively, that the motor was at
position x± a and x, at time t.

This can be rearranged to give

p(x, t+�t)� p(x, t)

�t

= k+ p(x� a, t) + k� p(x+ a, t)� k+ p(x, t)� k� p(x, t) . (5.2)

Without loss of generality, we can let �t ! 0, allowing us to write

lim

�t!0

p(x, t+�t)� p(x, t)

�t

=

@p(x, t)

@t

, (5.3)

and next approximate p(x± a, t) by the Taylor expansion

p(x± a, t) ⇡ p(x, t)± a

@p(x, t)

@x

+

a

2

2

@

2
p(x, t)

@x

2
. (5.4)

We can thus rewrite Eq. 5.2 in terms of p(x, t) and its partial derivatives. Noting that the terms
with k±p(x, t) at the right hand side cancel, we find

@p(x, t)

@t

= �a(k+ � k�)
@p(x, t)

@x

+

a

2

2

(k+ + k�)
@

2
p(x, t)

@x

2
. (5.5)

Finally, defining a drift velocity v = a(k+ � k�) and a diffusion coefficient D = (a

2
/2)(k+ +

k�), this yields the so-called Smoluchowski equation

@p(x, t)

@t

= �v

@p(x, t)

@x

+D

@

2
p(x, t)

@x

2
. (5.6)

In the case of v = 0, this reduces to the diffusion equation, a very general equation that, e.g.,
describes the diffusion of molecules in solution or the spreading of heat in a material, with
p(x, t) replaced by, respectively, a concentration c(x, t) or temperature T (x, t).
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Diffusion & Smoluchowski equation 
∂p(x,t)/∂t = -v ∂p(x,t)/∂x + D ∂2p(x,t)/∂x2 

 
Solution: p(x,t) = 1/√(4πDt) exp[-(x-vt)2/4Dt] 



Generally, we need multi-state models… 



1. Effect of fluctuations on mechanics 
 
2. Active mechanical components 

 a. Molecular motors 
  - Muscles 
  - Example of myosin V 
  - Diffusion / Smoluchowksi equation 
 b. Polymerisation motors 
  - Moving cells 
  - Simple models 



Cells are not static structures 



They crawl around… 



Actin polymerisation 



Polymerisation motor pushing against wall 



What determines rate? 

Monomer-addition limited Gap-opening limited 



Polymerisation motor (gap-opening limited) 

Diffusion wall arrives at δ => 
insert monomer and reset x→0 

Moving wall 



Solving the Smoluchowski equation 

  ∂p(x,t)/∂t = -F/γ ∂p(x,t)/∂x + D ∂2p(x,t)/∂x2 

 
Einstein relation : γD = kBT 

 
Boundary conditions : p(δ) = 0 and ∫0δ p(x)dx = 1 

Solution :  v = D/δ   (Fδ/kBT)2/(exp[Fδ/kBT] – 1 – Fδ/kBT)  ‏
Low force :  v = 2D/δ 
High force :  v = D/δ (Fδ/kBT)2 exp[-Fδ/kBT] 



Measure the polymerisation force 

Dogterom & Yurke, Science 278, 856 (1997) 



Experiments to detect polymerisation force 



1. Effect of fluctuations on mechanics 
 
2. Active mechanical components 

 a. Molecular motors 
  - Muscles 
  - Example of myosin V 
  - Diffusion / Smoluchowksi equation 
 b. Polymerisation motors 
  - Moving cells 
  - Simple models 
  - More cytoskeleton dynamics 



Cytoskeletal polymerisation 



Polymer in equilibrium 

•  Pn + P1 ↔ Pn+1 

•  Kd = [Pn][P1]/[Pn+1] 

Assume now Kd independent of n: 
•  Kd = [P1][P1]/[P2]  =>  [P2] = [P1]2/ Kd 
•  Kd = [P2][P1]/[P3] = [P1]/[P3] [P1]2/ Kd  =>  [P3] = [P1]3/ Kd

2 
•  [Pn] = Kd ( [P1]/ Kd )n = Kd exp[n ln[[P1]/ Kd ]] = Kd e-αn 

Probability distribution: 
<n> = ∫

0
∞n e-αn dn / ∫

0
∞e-αn dn = 1/α = 1/ ln[Kd /[P1]]  



Distribution of actin filament lengths 



Cytoskeletonal filaments are not static 

M
ircotubule � treadm

illing
� 

�Dynamic instability� of microtubules 



Models for polymerisation 



Dynamic instability 

At cap end : 
 
ATP or GTP bound 
monomers (unhydrolysed) 
=> Growth 
 
ADP or GDP bound 
monomers (hydrolysed) 
=> Shrinkage 

Model : 



Catastrophe rate 

Proportional to [monomer] 



1. Effect of fluctuations on mechanics 
 
2. Active mechanical components 

 a. Molecular motors 
  - Muscles 
  - Example of myosin V 
  - Diffusion / Smoluchowksi equation 
 b. Polymerisation motors 
  - Moving cells 
  - Simple models 
  - More cytoskeleton dynamics 
 c. Other motors (rotation, translocation, …) 

 
3. Viscous fluids 



Optical tweezers experiments 

Bead ~ 1 µm 

Molec. motor ~ 1 nm 

 

For comparison: 

Earth ~ 104 km 

Mt. Everest ~ 10 km 



Jiggling water molecules cause friction 



Navier-Stokes equation: Flow around sphere 

ρ ∂v / ∂t + ρ (v•�)v  =  -�p + η �2v 

~ ρ v2/R + ~ ρ v2/R   =  -�p + ~ η v/R2 

~ρvR /η + ~ρvR /η   =  -(�p)R2/ηv + ~1 

 inertial terms        viscous term 

Reynolds number 
ρ = mass density 

v = velocity 

p = pressure 

η = viscosity 

� = differential 



Aristotle's mechanics 

Aristotle (ca. 350 BC): 

�velocity proportional to force� 

 

Galileo, Newton et al. (ca. 1600 AD): 

F = m a 

F = 0  <=>  v = const. 

 

Stokes (ca. 1850 AD) and low Reynolds 
number (- 2015): F = const. v 



Reynold’s number 



Optical tweezers experiments 

Stokes law: 

F = 6 π η R v 

 = 6 π * 10-3 Ns/m2 * 
0.5 µm * 10-6 m/s 

 ~ 10-2 pN 

Motor force ~ 5 pN 



Stopping distance of a bacterium 



Stopping distance versus size (in water) 



How far does a bacteria need to swim to 
outrun (out-swim) diffusion? 

Bacterial velocity: 

v = 30 µm/s 

 

Diffusion of molecule 

in water: 

D = 500 µm2/s 

 

Recall polymer <R2> = L a , with L “path length” ~ time 



1. Effect of fluctuations on mechanics 
 
2. Active mechanical components 
 
3. Viscous fluids 

 - Navier-Stokes equation 
 - Reynolds number 
 - Inertial does not matter here 
 - Friction does 

 
 



More and more complex… 



1. Effect of fluctuations on mechanics 
 
2. Active mechanical components 
 
3. Viscous fluids 

 - Navier-Stokes equation 
 - Reynolds number 
 - Inertial does not matter here 
 - Friction does 
 Bonus material: Purcell paper (1976) 

 
 




















